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Abstract 
 

An increasing number of Air Force related systems are being modeled as networks. This has motivated 
philosophical discussions concerning distributed networked operations and network centric warfare. 
However, successful application of such approaches will require a solid mathematical foundation. In this 
work, a mathematical framework is proposed that uses graph theory and information theory. Once a 
mathematical model of the network is established and suitable objective functions are identified to 
quantify the performance of the network, optimization theory is used to identify the vulnerabilities of the 
network. Knowledge of these vulnerabilities can be exploited to take down a network or make the 
network less efficient, for example through increased congestion, if that is the goal. On the other hand, if 
the goal is to protect the network, the proposed approach can help system designers to improve reliability. 
Simple examples such as a logistics distributed network for Air Terminal Operations Flight (ATOF) are 
used to illustrate the approach. Using a genetic algorithm, it is shown that the difference between the 
maximum and minimum information flows of a network can be quite significant. Identifying the 
maximum and minimum flows provides decision makers with an understanding of how to protect or 
attack a network system. 
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Executive Summary 
 
The ability to efficiently model and evaluate complex networks such as those found in modern military 
systems are critical for decision making. A combination of multiple scientific disciplines will be required 
to understand how highly connected systems operate. Such techniques will allow decision makers to 
uncover explanations for how simple processes at the level of individual nodes and links can have 
complex effects that ripple through the overall network. This report describes an approach to study 
networks based on graph theory and information theory. A graph is a mathematical structure that consists 
of a set of vertices and set of edges, where each edge links a pair of vertices. Components of the network 
are identified with the vertices, also called the nodes, and the relationship between the nodes is given by 
the edges.  Properly formulated graphs identify patterns of interconnections among a set of elements. 
However, successful decision making requires more than representing the network in question. There 
must also be a means of quantifying the effects that individual elements and groups of elements of the 
network have on each other and on the overall system. In this work, the problem of quantifying this 
effectiveness is addressed using information theory. Originally developed to solve fundamental problems 
in the theory of communication systems, information theory also has applications in economics, computer 
science, probability theory, statistics, and a number of other important areas. The next problem addressed 
in the work is the network flow problem. Maximizing and minimizing the network flow allows the 
decision maker to identify the effectiveness of the network and to identify critical flows that should be 
protected or attacked, depending on the goals of the decision maker. Unfortunately, optimizing the 
network flow is generally a difficult problem. To address this problem, genetic algorithms are used. 
 
The concepts developed in this work are carefully illustrated with simple examples. To demonstrate the 
efficacy of the approach, a specific Air Force related logistic distributed network system is studied in 
Section 6. This problem is formulated as an optimization problem in Section 7 and a discussion of the 
results appears in Section 8. 
 
In conclusion, a systematic approach has been developed to study the efficiency of networks. This 
approach uses graph theory to determine the structure of the network and genetic algorithms to study the 
minimum and maximum flow of the network. The ability to study and optimize network flow gives 
decision makers the ability to identify critical and vulnerable nodes and the opportunity to induce or 
mitigate congestion. The efficacy of the approach was illustrated with some simple examples. Further 
recommendations are that more difficult and realistic Air Force related problems should be studied using 
the developed methods.
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1.0  INTRODUCTION 
 
In [1] J. Cares has identified some current challenges within the study of network centric systems to 
characterize military and other complex network interactions. However, his work stressed very little on 
the mathematical aspect of such systems. Obviously characterizing any system mathematically quantifies 
many things. This shows the need for developing some basic mathematical techniques to analyze complex 
networks. The approach followed in this work is to synthesize mathematical procedures to quantify 
performance in terms of information or other flow variables that may occur in those networks. A general 
assumption is that performance is proportional to the high rate of flow of information through systems. 
For human machine systems, the flow arrows indicate the input and output of several human-machine 
systems. These inputs and outputs may consist of different units such as telephone calls, emails, mouse 
clicks, etc. A paradigm of resources working on a common task in a team environment can be used to 
describe these human machine interactions. Performance can be assumed to be proportional to a sufficient 
throughput while traversing the network. A very general assumption is that a network with a low level of 
information flow, i.e., a congested network, may not have the best of performance. However, when we 
take reliability and reduced vulnerability (less likely to be attacked), the congested networks may provide 
alternative advantages in being resistant to some types of attack. This is much like the trade-off between 
speed and accuracy. In certain tasks speed may be more important than the accuracy and for some 
systems accuracy might be of more interest. Thus high or low levels of information flow may be 
interpreted depending upon the type of task performed. 
 
In this report, we describe a mathematical framework for network centric systems that is applicable to 
military type systems. Such a framework can serve as a basis for studying important network issues such 
as cyber attacks. The next section describes graph theory concepts that form the basis for the proposed 
approach. 
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2.0  INTRODUCTION TO GRAPH THEORY 
 
Basic procedures from graph theory, which will enable the generalization of this methodology to complex 
networks, are discussed in this section. 
 
2.1 Basic Graph Theory Notation 
 
A directed graph G=(N, A) consists of a set N of nodes which are also referred as vertices and a set A of 
arcs which are also called as links or edges. The elements in an arc are ordered pairs of distinct nodes. 
Figure 1 gives an example of a directed graph. For this graph, N={1, 2, 3, 4, 5, 6, 7} and A = {(1,3), (2,1), 
(2,3), (2,4), (3,5),(3,6),(4,7),(4,5),(5,2),(6,7),(7,5)}. A directed network is a directed graph whose nodes or 
arcs have associated numerical values. 
   

 
 

Figure 1. Network with Cut Set and Flow Capacity Measures 
 

The characteristics of link i is given by the triplet [cia, cib, cic] where i = link number, cia = the capacity of 
the link, cib = the actual flow (thus |cib| < cia), and cic is the cost per unit flow to traverse this arc. One 
useful tool from graph theory to characterize the structure of a network is the adjacency matrix. 
 
2.2 Node-Node Adjacency Matrix 
 
An adjacency matrix describes the network as an nn  matrix, H={hij}, where n is the number of nodes 
present in the network. This matrix has rows and columns corresponding to every node and its ijth entry hij 
equals 1 if (i,j) 



 A and equals 0 otherwise [2]. Figure 2 specifies this representation for the network 
shown in Figure 1. Since link 1 starts at node 1 and ends at node 3, a ―1‖ appears in first row and third 
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column of the H matrix. The number of non-zero elements of the adjacency matrix is equal to the number 
of links in the network. The Frobenius norm of the adjacency matrix provides a measure for connectivity 
of a complex network. Recall that the Frobenius norm of a matrix is the square root of the sum of the 
squares of the elements in the matrix. A larger value of the Frobenius norm implies high interconnectivity 
within the network. 
 

 
 

Figure 2. Adjacency and Incident Matrices for Figure 1 
 
Figure 2 also displays the incident matrix of the network shown in Figure 1. The nodes correspond to the 
rows, and the links correspond to the columns in this matrix. Since link 1 starts at node 1 and ends at node 
3, a ―1‖ appears at both first and third rows of first column. Each column in an incident matrix has exactly 
two ones. 
 
In Figure 1, a ―cut-set‖ is specified by a curve that divides the network into two or more parts. A network 
may have a source vertex (denoted by ‗s‘) that generates the flow and a sink vertex (denoted by ‗t‘) that 
absorbs the flow. If a cut-set does not isolate a source or sink, then at a node, such as vertex 3, the net sum 
of the flows should be zero (Kirchoff‘s law) through the cut set [3] and denoted via: 

c1b + c3b – c5b – c6b = 0              (1) 
where the flows entering the node are considered positive and the flows leaving a node are negative. If, 
however, a cut set isolates a source or sink, the total flow impacting the cut set would be the value of the 
flow out of a source or into the sink. 
 
2.3 Maximum Flow Problem 
 
The maximum flow problem is to find the maximum flow possible between two special nodes, a source 
node s and a sink node t, without exceeding the capacity of the edge. Consider a capacitated network G = 
(N, A) with ‗s‘,‗t‘



 N being the source and sink of G, respectively. The capacity of an edge is a mapping 



c : A R , denoted by cuv that represents the maximum amount of flow that can pass through this edge. 
A flow is a mapping  RAf : , denoted by fuv, subject to the following two constraints: 
1.)     fuv



cuv for each (u,v) 



 A (capacity constraint: the flow of an edge cannot exceed its capacity) 
2.) 




Auvu

vu
Avuu

uv ff
),(:),(:

, for each },{\ tsVv  (conservation of flows: the sum of the flows entering a 

node must equal the sum of the flows exiting a node, except for the source and the sink nodes). 
 
The value of flow is defined by 




Vv

svff ||  where ‗s‘ is the source of A. It represents the amount of 
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flow passing from the source to the sink. The maximum flow is to maximize |f |, that is, to route as much 
flow as possible from ‗s‘ to ‗t‘. The maximum value of an s-t flow is equal to the minimum capacity of an 
s-t cut in the network, as stated in the max-flow min-cut theorem [4]. This problem can be formulated as 

Maximize the flow = 
u

)f-f( ussu                                        (2) 

or Minimize the quantity: (cost * flow) = )f * C-f *(C
,

svsvsusu
vu

                            (3) 

where Csu is the cost associated with that link. The above equations are subjected to the constraints stated 
above.  
 
Flow optimization of a complex network can be difficult using conventional optimization techniques. One 
approach is the use of genetic algorithms. The next section is a brief discussion on genetic algorithms. 
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3.0 GENETIC ALGORITHM 
 
As early as the 1950‘s, the biological metaphor of evolution was being applied to computation. As 
computational power has increased and the foundations of these evolutionary algorithms have been 
formalized and improved, evolution based approaches have increasingly been used in the solution of 
optimization problems. Currently, Bäck [5] identifies three strongly related but independently developed 
approaches to evolutionary computation: genetic algorithms, evolutionary programming, and evolution 
strategies. Although identified as distinct aspects of evolutionary programming, the three evolutionary 
strategies are closely related by their mimicry of natural evolutionary processes. The work described here 
is concerned with the application of genetic algorithms as optimization tools. 

Since their formal introduction in 1975 by Holland [6], genetic algorithms have been applied to a variety 
of fields—from medicine and engineering to business—to optimize functions which do not lend 
themselves to optimization by traditional methods, and other applications of genetic algorithms include 
automatic programming and simulation of natural systems. More recently, the study and practical 
development of genetic algorithms by Goldberg and DeJong [7,8] has resulted in great growth in the 
application of genetic algorithms to optimization problems. As succinctly stated by Goldberg, genetic 
algorithms are ―search procedures based on the mechanics of natural selection and natural genetics.‖ 

Random choice is used as a tool to guide a global search in the space of potential solutions. 
 
Genetic algorithms differ from traditional optimization and search methods in several respects. Rather 
than focusing on a single candidate solution (point in design space), genetic algorithms operate on 
populations of candidate solutions, and the search process favors the reproduction of individuals with 
better fitness values than those of previous generations (optimal individuals). Whereas calculus-based and 
gradient (hill climbing) methods of solution are local in the scope of their search and depend on well-
defined gradients in the search space, genetic algorithms are useful for dealing with many practical 
problems containing noisy or discontinuous fitness values. Enumerative searches are also inappropriate 
for many practical problems. Because they exhaustively examine the entire search space for solutions, 
they are only efficient for small search spaces, while the global scope of the genetic algorithms makes 
them suitable for problems with large search spaces. Thus, genetic algorithms not only differ in approach 
from traditional optimization methods but they also offer an alternative method for cases in which 
traditional methods are inappropriate [9]. 
 
Genetic algorithms have been applied (or misapplied) to continuous optimization problems, but that is 
rarely as effective as continuous optimization methods. Evolutionary programming is appropriate for 
continuous problems, while genetic algorithms, being inherently discrete, are not. The genetic algorithm 
as a discrete optimization process is distinct from more conventional optimization techniques in five 
ways: 
 

1. Genetic algorithms encode designs (feasible points) in a string, and it is this encoding which the 
genetic algorithm works with: each individual in a population is an encoding of a possible 
solution to the discrete optimization problem being analyzed. 
 

2.  Genetic algorithms work simultaneously with a population of designs, not a single design or 
candidate solution. 
 

3. Genetic algorithms use only an objective function to evaluate candidate solutions, not derivatives 
or other auxiliary information. 
 

4.  Genetic algorithms use random change in their search, not (solely) deterministic rules. The 
process used by genetic algorithms to evolve solutions to optimization problems is analogous to 
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the natural process of evolution by natural selection. Evolution as a natural process allows 
complex, highly adapted organisms to develop and thrive in an environment through the 
processes of genetic change and natural selection. Sexual reproduction (sexual in the sense of 
occurring between two parent individuals as opposed to one) provides for the preservation of 
existing genetic information and the creation of new genetic information, and individuals in a 
population survive based on their fitness in their environment. Fitness is a quality measure of an 
individual‘s viability with respect to such criteria in the natural environment as food supply, 
competition for food and mates, and predation. The genetic information carried by more fit 
individuals is more likely to be passed on to ensuing generations simply because more fit 
individuals are more likely to survive to reproduce—Darwinian survival of the fittest. 
 

5. Genetic Algorithms apply the natural evolutionary processes of evaluation and selection to string 
representations of the arguments of the function being optimized. Structures (individuals in 
natural systems) are encoded into one or more strings (chromosomes). These individuals 
reproduce, and fit individuals persist from generation to generation, yielding improved designs. 

 
The structure is analogous to the phenotype in natural systems and corresponds to a candidate solution to 
the optimization problem or a point in the design space, while the string encoding of the arguments to the 
function being optimized is analogous to the genotype. A decoding from the string representation to the 
structure is made for the purpose of fitness analysis by the objective function. The objective function 
yields a quantitative measure of an individual‘s utility or goodness, to be used as a selection criterion. 
 
For sets of individuals (population), evolution is simulated by means of reproduction and random genetic 
changes affected by genetic operators, and survival of the fittest is accomplished by first evaluating each 
structure‘s objective function value, and then selecting for reproduction and survival those structures 
which fit a predetermined selection criterion, biased towards selecting fitter individuals. The search is 
exploitative: selection is accomplished by analyzing the objective function value with the goal of 
preserving genetic information, which minimizes the objective function. More formally, the aim of the 
search is to identify an approximation of the global minimum of a real-valued objective function f: M → 
E, by evolving a solution Mx *  such that )()( *xfxf   for all Mx . The process is analogous if 
the goal is to maximize the objective function. 
 
3.1 Designing a Genetic Algorithm 
 
The genetic algorithm is a heuristic search process, and its behavior is governed by the following design 
choices: 
 

1. How shall an individual be represented—what are the values taken on by the genes in the 
chromosome strings encoding the arguments to the function being optimized? 
 

2. Creation of individual and mechanism of reproduction. 
 

3. Genetic operators used in accomplishing the genetic processes. 
 

4. By what means will fit individuals in a population be selected for reproduction—what is the 
mechanism of selection? 

 
The following sections discuss these choices in more detail. 
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3.2 Representation of Individuals 
 
The genetic information that is operated on by a genetic algorithm is contained in the chromosomes. A 
chromosome is a finite length string and is made of genes. A gene is an encoded variable of the problem 
being optimized and it will take values from alphabets. An alphabet is analogous to a set of alleles in 
nature. The nature of the alphabet used for encoding depends upon the problem being optimized. 
Generally cardinality also depends upon the problem. According to Goldberg‘s principle of meaningful 
building blocks and principle of minimum alphabets [7], low cardinality alphabets are recommended and 
often binary or gray codes are used for encoding. High cardinal alphabets are used if the problem requires 
them. 
 
3.3 Reproduction of Individuals 
 
In genetic algorithms, evolution from generation to generation is simulated both by preserving the genetic 
information contained in the chromosome strings of fit individuals and by altering this information by 
means of random genetic changes. Genetic operators affect both of these goals. 
 
Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce a new 
chromosome (offspring). The idea behind crossover is that the new chromosome may be better than both 
of the parents if it takes the best characteristics from each of the parents. Crossover occurs during 
evolution according to a user-definable crossover probability. The probability for chromosome crossover 
is around 60 - 70%. 
 
During one point crossover, a crossover operator that randomly selects a crossover point within a 
chromosome then interchanges the two parent chromosomes at this point to produce two new offspring. 
Consider the following two parents, which have been selected for crossover. The ―|‖ symbol indicates the 
randomly chosen crossover point. 

Parent 1: 11001|010 
Parent 2: 00100|111 

 
 After interchanging the parent chromosomes at the crossover point, the following offspring are produced:  

Offspring1: 11001|111 
Offspring2: 00100|010 

 
During two-point crossover, a crossover operator that randomly selects two crossover points within a 
chromosome then interchanges the two parent chromosomes between these points to produce two new 
offspring. Consider the following two parents which have been selected for crossover. The ―|‖ symbols 
indicate the randomly chosen crossover points. 

Parent 1: 110|010|10 
Parent 2: 001|001|11 

 
After interchanging the parent chromosomes between the crossover points, the following offspring are 
produced: 

Offspring1: 110|001|10 
Offspring2: 001|010|11 

 
3.4 Introducing Random Genetic Change 
 
The goal of introducing change to the information in the chromosome strings of individuals created by 
crossover is achieved with the mutation, addition, deletion, and permutation operators. The mutation 
operator alters the information of a chromosome by changing the value of a gene present in that 
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chromosome. This is achieved by generating a random variable and comparing it with mutation rate. 
Mutation rate is the chance that a particular gene in the chromosome is flipped. This is usually a very low 
value for a binary encoded gene, say 0.01.The following example illustrates the mutation operator. A 
randomly determined gene in the chromosome is changed. The mutated gene is indicated as a bold 
character. 
Before Mutation: 
[111 110 101 010 101 010] 
 
After Mutation: 
[111 110 101 010 001 010]. 
 
The addition operator randomly adds a gene to the chromosome string. In this, a randomly determined 
gene from offspring 2 is added at a random point in offspring1. The randomly selected addition point is 
denoted by the symbol | . In this example, addition causes the number of actual genes in the chromosome 
to increase from 15 to 16. 
 
Chromosome before addition  
[3 2 3 1 3 3 2 1 3|2 3 1 0 0 0]  
 
Chromosome after addition 
[3 2 3 1 3 3 2 1 3 3 2 3 1 0 0 0]. 
 
The deletion operator is similar to addition except that instead of adding a new gene an existing gene 
present at a randomly generated point is deleted from the chromosome. In this example, deletion causes 
the number of actual genes in the chromosome to decrease from 15 to 14. 
 
Chromosome before deletion  
[3 2 3 1 3 3 2 1 3 3 2 3 1 0 0]  
 
Chromosome after deletion  
[3 2 3 1 3  2 1 3 3 2 3 1 0 0]. 
 
The permutation operator relays information from one part of the chromosome to another by inverting the 
order of a randomly determined sequence of genes. In the following example, the points at which the 
permutation operator is applied are indicated by the symbol | . 
 
Chromosome before permutation  
[3 2 3|1 3 2 1 3 3|2 3 1 0 0 0]  
 
Chromosome after permutation  
[3 2 3|3 3 1 2 3 1|2 3 1 0 0 0]. 

3.5 Selection for Reproduction 
  
In genetic algorithms, the goal of simulating natural selection is achieved by implementing a selection 
mechanism. Every individual chromosome is encoded as a string. In every generation this chromosome 
string is decoded and its fitness value, which is a measure of its quality, is calculated using an objective 
function. Individuals are selected randomly from the population for mating where the individuals with 
higher fitness values are given higher priority. 
 
Biasing of the selection criteria is accomplished using roulette wheel selection. Roulette selection is 
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calculated on the normalized fitness values of a population. Normalization is the summing of the fitness 
for the entire population and then dividing each individual‘s fitness by this sum. The probability of a 
particular chromosome being selected depends on its normalized value, i.e., the higher the normalized 
value, the higher the probability that chromosome will be selected. A uniform random variable between 0 
and 1 is generated; the chromosome with the normalized fitness value close to this variable is selected for 
mating. 
 
Using a selection criterion instead of simply selecting chromosomes with the highest fitness value ensures 
that the individual with the highest fitness value does not dominate the succeeding generation. In order to 
preserve the properties of the best chromosome in the current population, it is added to the child 
population after the child with least fitness value is discarded. This is known as elitist selection. There are 
several other methods other than roulette selection like tournament selection where two individuals are 
randomly selected from the current population and the individual with the highest fitness value between 
them is selected for mating. 
 
3.6 The Genetic Algorithm 
  
Finally, the Genetic Algorithm (GA) may be expressed algorithmically. The implementation of this 
algorithm is referred to as the standard GA (sGA) [3]: 
 

gen=0, initialize population with a default structure (chromosome). 
Calculate the fitness value for each of the structure. 
While not terminated 
 Do 
 Generate child structures (offspring) from population by crossover and then apply genetic 

operators (mutation) to the children. 
 Calculate the fitness value of the children. 
 If the fitness value is greater than the least value then update the population with this child. 
 Select from updated population (Using roulette method). 
 gen=gen+1. 
End. 
 

This can be terminated after a certain number of generations after which there is no real change in the 
fitness value or after the fitness value has reached a satisfactory value. Here gen is an integer value, which 
represents the number of the generation. Population is referred as a set of structures (chromosomes). 
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4.0 INFORMATION THEORY 
 
In this section we introduce most of the basic definitions required for the subsequent development of the 
theory. After defining entropy and mutual information we establish the relationship between them and 
prove the non-negativity of the mutual information. For any probability distribution, we define a quantity 
called entropy, which has many properties that agree with the intuitive notion of what a measure of 
information should be. This notion is extended to define mutual information, which is a measure of the 
amount of information one random variable contains about another. Mutual information is a special case 
of a more general quantity called relative entropy, which is a measure of the distance between two 
probability distributions [10]. All these quantities are closely related and share a number of simple 
properties, some of which are discussed in this section. 
 
4.1 Entropy 
 
Entropy is a measure of the uncertainty in a random variable. If p(x) is the probability of the event X=x 
where is X is a discrete random variable then we can define entropy as 

                                                        












Xx xp
xp

)(
1log)( =H(X)  .                                                           (4) 

The log used here is a logarithm of base 2. Generally entropy is expressed in bits. If the logarithm used is 
of base other than 2 then it is denoted as Hb(x) and is expressed in nats [10]. 
 
We will use the standard convention that 0∙log(0)=0. The fact that this convention is well defined follows 
from the observation that 0)log(lim

0



xx

x
. 

 
4.1.1 Joint Entropy 
 
Joint entropy characterizes the uncertainty in two random variables. The joint entropy H(X, Y) of a pair of 
discrete variables (X, Y) with a joint distribution p(x, y) is defined as 

                                                     

 










Xx Yy yxp
yxp

),(
1log),(=Y)H(X,  .                                            (5) 

      
4.1.2 Properties of Entropy 
 

1. Entropy is always greater than or equal to zero. Entropy is equal to zero when the probability of 
the event is zero  

                                                 H(X)



0.                                                                   (6) 
 

2. Let P={p(x1), p(x2),….} be the probability distribution of X, then H(X) is continuous in P. 
                                                                                                  

3. If X and Y are jointly distributed random variables, then H(X,Y) 



H(X)+H(Y) with equality if and 
only if X and Y are statistically independent. 

 
4. Entropy is a symmetric function: 

       H(X,Y)=H(Y,X).                                                                  (7) 
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4.2 Conditional Entropy 
 
Conditional Entropy is the remaining uncertainty (entropy) in a random variable given that the value of 
the other random variable is known. It is referred to as entropy of ‗X‘ conditional on ‗Y‘ and is written as 
H(X|Y). Conditional entropy H(X|Y) is the weighted average (with respect to the probabilities p(y)) of the 
entropies H(X|y) over all the possible values of Y. It is computed as                                                        

                          
 











Xx Yy yxp
yxpyp

)|(
1log)|()(= Y)|H(X                                       (8) 

where p(x|y) is the probability that X=x given that Y=y. 
 
4.2.1 Chain Rule for Joint Entropy 
 
The joint entropy of a pair of random variables is equal to the sum of entropy of the one and the 
conditional entropy of the other: 
                                                           H(X,Y)=H(X)+H(Y|X).                                          (9) 
It should be noted that H(X|Y) is not equal to H(Y|X). However, H(X,Y) is equal to H(Y,X). 
 
4.3 Mutual Information 
 
Entropy in its basic form is a measure of uncertainty rather than a measure of information. Specifically, 
the entropy of a random variable gives the amount of information needed to describe that random 
variable. When the entropy of a random variable is large that means more information is needed to 
describe that random variable. Although conditional entropy can tell us when two variables are 
completely independent, it is not an adequate measure of dependence. So we choose mutual information 
as a measure, which gives the amount of information that a variable contains about the other one.  
Mutual information I(X;Y) measures how much the realization of random variable Y tells us about the 
realization of X; simply it is a measure of reduction of randomness (uncertainty) of a variable given 
knowledge of another variable:  

                                  I(X;Y)=H(X)-H(X|Y).                                                 (10) 
 

We can express equation (9) in one additional way by invoking the chain rule 
   I(X;Y)=H(X)+H(Y)-H(X,Y).                                    (11) 

 
This equation can be described within the context of a Venn diagram below [11] 
 

 
 

Figure 3. Information Variables as a Venn Diagram 
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4.3.1 Properties of Mutual Information 
 

1. Mutual information of a group of random variables is always a non-negative number 
                                                      I(X;Y) 



0.                                                      (12) 
 

2.  Mutual information satisfies the symmetric property 
                                                           I(X;Y)=I(Y;X).                                                   (13) 

 
3. Mutual information between a random variable and itself is simply its entropy 

                                    I(X;X)=H(X).                                              (14) 
 

Mutual information does not satisfy the triangular inequality since  I(X;Z) 



I(X;Y)+I(Y;Z) is not always 
true for three random variables X,Y,Z. For this reason we cannot consider mutual information as a metric, 
so we introduce two new terms: the relative information distance metric DR and the efficiency measure Ef. 
  
4.4 Relative Information Distance and Efficiency Measure  
   
From Figure 4 we can say that the information channel consists of five variables as originally defined by 
Shannon, in which only three are independent [10]. As illustrated in the figure, the information channel is 
independently characterized by the three variables on the right hand side. We can define the relative 
information distance metric DR as 

DR =H(X|Y)+H(Y|X).                                                   (15) 
From the definitions of conditional entropies we can express DR as 

DR =2H(X,Y)-H(X)-H(Y)=H(X)+H(Y)-2I(X;Y).  
The efficiency measure can be defined as 
                                                                   Ef =I(X;Y)/H(X)    for H(X)>0.                       (16) 
 

 
 

Figure 4. Transforming the Communications Channel into Information Variables 
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All five Shannon variables on the left hand side can be written in terms of their three key constituent 
information quantities (I, Ef, DR) and vice versa. The following eight relationships show the unique 
objective mapping that exists between the five uncertainty variables derived by Shannon and three 
parsimonious variables DR, Ef, and I(X;Y) [3]: 

   H(X) = [I(X;Y)] / Ef,  for Ef > 0                                                              (17) 
 H(X/Y) = [I(X;Y) ( 1- Ef ) ] / Ef                                                                (18) 
H(Y/X) = DR – I(X;Y) ( 1 – Ef ) ] / Ef                                                         (19) 
H(Y) = I + DR – I(X;Y) (1 – Ef ) / Ef  .                                                      (20) 

I(X;Y) = I(X;Y)  (this variable was originally an information variable)           (21) 
 

Conversely, DR, EF and I  on the right side of  Figure 6 satisfy:  
DR =  H(X|Y) + H(Y|X)                                                                             (22) 

                                Ef = [I(X;Y)] / H(X), for H(X) > 0                                                          (23) 
                                                I(X;Y) = I(X;Y).                                                              (24) 

 
To understand the utility of these three variables in a better way observe Table 1. This table shows the 
spectrum of dependence between the input and output symbol sets in terms of information variables by 
taking three different cases into consideration. 

 
Table 1. Range of Values of the Key Variable in Figure 4 

 
 
Case 1: The received symbols ‗Y‘ are independent of the input symbols ‗X‘. 
Case 2: The received symbols ‗Y‘ are somewhat related to input symbols ‗X‘ but both the conditional 
entropies are non-zero. 
Case 3:  The received symbols are precisely equal to the input symbols ‗X‘. 
 
We will look into these cases a little more carefully in the following section. 
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4.4.1 Discussion of Entries in the Table 1 
 
H(X) is the input to the information channel, which is assumed to be constant; H(X|Y) is the loss in 
bits/sec from H(X) to the environment which can never be recovered; I(X;Y) is the mutual information; 
H(Y|X) is the spurious uncertainty; and H(Y) is the received level of uncertainty at the channels output. 
 
The ranges of DR and Ef are very interesting. When the random variables X and Y are completely 
independent, mutual information between them is zero. So DR is at its maximum and at the same time Ef 
will be zero. When X and Y are 100% correlated then DR will be zero and Ef will be equal to 1, its largest 
value. So, the information channel is maximally efficient in producing the information flow. When X and 
Y fall between the extremes of being totally independent or totally correlated, then DR is a positive 
number (0 < DR < DRmax) indicating the relative distance between the random variables, whereas Ef has a 
value between 0 and 1 which reflects the percentage of information flowing in relation to its original input 
H(x) and it is normalized, accordingly. 
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5.0 APPLYING GRAPH AND INFORMATION THEORY CONCEPTS TO COMPLEX     
NETWORKS 

 
Graph theory is an important tool for the analysis of the structure of certain network centric systems. 
Optimization problems have to be formulated to deal with actual flows and bottleneck situations. The 
maximum or minimum flow problem [2, 3] may be formulated in graph theory terms as follows:  

    Maximize the flow = 
i

)C-(C biib                               (25) 

or Minimize the quantity: (cost * flow) = 
ji,

jbjcibic )C C - CC(    (26) 

                Subject to a number of constraints such as: Cia > Cib, Cib > 0, etc.      (27) 
 

Then an algorithm could be obtained to calculate the flow.       
                                                                                       

 
 

Figure 5. Two Network Centric Systems 
     

Consider the above networks in Figure 5, the network on the right hand side looks simple when 
compared to the one on the left side. This is because the right hand side one has fewer layers and nodes 
compared to left hand side one. However, if we look at the networks closely we can observe that the 
network on the right hand side has three feedback links, which decreases the efficiency and the flow 
capability of the network. Thus, the inefficiency of flows is a structured attribute and may not easily be 
discerned from the adjacent and incident matrices of the graph theory. To determine flow in an 
objective and quantative manner, other means of discussion are required such as one that occurs in 
information theory. 

 

The end goal of this discussion is that we should be able to identify the part of the network where 
congestion occurs. This would be very helpful for decision makers such as commanders. After these 
congestion areas can be identified in a spatial sense, then the changes can be attempted, such as adding or 
subtracting nodes/links. The above discussion can be illustrated in Figure 6. 
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Figure 6. Visual Rendering of the Different Flow Characteristics of Distributed Systems 
 

In Figure 6, it can be seen that different regions of the graph experience different local flow and 
congestion issues. Developing mathematical methods to identify these issues is an important goal. 
 
The approach taken in this report combines the techniques from three disciplines: graph theory, 
optimization theory and information theory. Figure 7 explains how these disciplines interact. What is 
required next is to convert a complex network into an information theoretic framework. The following 
section explains this in detail. 
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Figure 7. Combining Three Major Disciplines 

5.1 Applying Information Theoretic Methods to the Network Centric System: 
 
The goal here is to quantify the following properties of complex networks: 

(1) Their congestion characteristics being measured via a flow variable.  
(2) Develop an objective measure of a network‘s vulnerability. 
 

A complexity measure for a distributed networks developed by Repperger [12] is briefly presented here. 
A complexity impedance measure is defined as follow: 

Complexity measure =  ))(/)((log))]det(/([ 2 yHxHC nCT
n               (28) 

where   α = constant of proportionality. 
C n = contingency matrix which will be defined from information theory models for specific 
intricate configuration of networks, and 
H(x) and H(y) will also be described within the context of network--‐centric systems. 

 
To determine the flow in a network is the key. The following will show the procedure to convert a 
network in a paradigm in which the actual flow in an ellipsoid can be calculated using information 
theory techniques. With no sources or sinks inside the ellipse, it should be noted that the closed cut set 
requires 

∑ flows = 0 
 

or 
 

I1 + I2 + I3 = O1 + O2 .              (29) 
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Figure 8. Framework for Combining Graph Theory with Information Theory 
 

We make the following assumptions to implement these procedures: 

)).(/)((log))]det(/([ 2 yHxHC nCT
n  

 
Assumption 1 
The above figure is an ellipsoid isolated from a more intricate network system. We treat this ellipsoid as 
an information channel. 
 
The three inputs I1, I2, and I3 represent the vector input flow and these can be viewed as input symbols to 
the information channel. Similarly O1 and O2 are the output flows, which can be viewed as received 
symbols. For any arbitrary ellipse, they are either arrows that enter the ellipse or arrows that leave the 
ellipse, so they can be classified as either inputs or outputs with no internal source or sinks. 

 
Assumption 2 
The net sum of the flows across the cut set would sum to zero with no source or sink inside an ellipsoid, 
much like Kirchhoff‘s current law into a node of a circuit.  
 
Assumption 3 
The nodes are connected by links, which are characterized by the triplet [Cja, Cjb, Cjc], where Cja is the link 
capacity, Cjb is actual link flow (load) and Cjc is the cost. Naturally Cjb ≤ Cja. The total cost of a particular 
flow can be given by CjcCjb, which will represent an important performance parameter. The cost Cjc may 
have units of time or resources. 
 
Assumption 4 
A contingency table and contingency matrix are necessary to analyze a network in an information 
theoretic sense. To define Cn, a response matrix must be synthesized in communication systems and 
information theory [12,13]. In communications, a response matrix helps in identifying all the actions of 
responses necessary to complete a task, where as in complex networks it helps in translating the total 
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input flows required to produce a necessary output. The following examples show that the response 
matrix can be described as it occurs commonly in communication systems. 
 
Assumption 5 
A contingency table is formulated by normalizing all the elements of the response matrix. 
 
Assumption 6 
With the contingency table constructed from assumptions 4 and 5, the entropies H(X), H(Y), and H(X,Y) 
can be determined as follows: 
 

(a) H(X) is the sum across all the rows.  
(b) H(Y) is the sum down all the columns. 
(c ) H(X,Y) is the sum of all the elements in the table.  
 

The calculation of the remaining variables easily proceeds since: 
                               I(X;Y) = H(X) + H(Y) – H(X,Y)                                                      (30) 

is a true flow variable. The remaining two entropies can then be determined: 
                                       H(X/Y) = H(X) – I(X;Y)                                                            (31) 

                                                          H(Y/X) = H(Y) – I(X;Y) .                                               (32) 
 
Six examples are now worked to show how to apply this method to arbitrary networks. 

5.2 Six Examples to Illustrate the Procedure 
 
We now consider six examples to show the procedure. Our goal is to examine the complexity impedance 
and other flow parameters of all the networks. In the first four examples, only forward flows are 
considered. However in Examples 5 and 6 backward flows are taken into account because of which we 
are going to observe an increase in complexity impedance. For the sake of simplicity, all flow variables 
will be denoted as fi. 
 

Case 1: 
Figure 9 is just a concatenation of simple forward flow through two nodes in series. The first element in 
the response matrix is sum of all flows entering node 1. This is f1. The next element is given by flows from 
node 2 to node 1. The last element in the matrix is the sum of all forward flows into node 2 which is f1. To 
make the contingency matrix, normalize the elements of response matrix. This is done by dividing every 
element by sum of all elements in response matrix. Summing all the flows response yields 

f1 + f1 + f1 = 3f1. 
Therefore contingency table contains one--‐third as three elements. The contingency table is shown in 
Figure 9. Calculations for entropy and mutual information are shown below. 
 
On the right side of the contingency table we sum across the columns for each row. This determines the 
elements for H(X). We then sum each column and place those sums at the bottom of the contingency table 
to calculate H(Y). Then we calculate H(X,Y) for every element in the contingency table. 
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Figure 9. Simple Forward Flow describing Case 1 
 
 

H(X) = (2/3) log2(1/(2/3)) + (1/3) log2(1/(1/3)) = 0.9183 bits                            (33) 
                H(Y) = (1/3) log2(1/(1/3)) + (2/3) log2(1/(2/3)) = 0.9183 bits   (34) 

H(X, Y) = (1/3) log2(1/(1/3))+ (1/3) log2(1/(1/3))+(1/3) log2(1/(1/3)) =  1.5850 bits        (35) 
 
Then 

I(X; Y) = H(X) +H(Y) – H(X, Y) =  0.9183 + 0.9183 -- 1.5850 = 0.2516 bits                (36) 
and H(X / Y) = H(X) – I(X; Y) =  0.9183   --‐   0.2516  =  0.6667 bits                        (37) 

                     with H(Y / X) =  H(Y) –  I(X; Y) = 0.9183  --‐   0.2516  = 0.6667 bits.                        (38)      
   

This completes the Shannon variables. The remaining calculations are determined via: 
DR   = H(X / Y) + H(Y / X)  =   0.6667 + 0.6667 = 1.3333   bits                              (39) 

              Ef  = (I(X; Y) ) / H(X) = 0.2516 / 0.9183 =0.2740 (dimensionless)          (40) 
 
Case 2: 
As discussed earlier, rows represent outputs and columns represent the inputs. The first element in the 
first row is given by the total number of flows into node N1 which is equal to f1 = 6. The second element 
in that row is given by total flow from N1 to N2 which is equal to fa1 = 3. Similarly, the third element is 
given by fa2 =3. The first element in the second and third row is equal to zero because there is nothing 
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going from node 2 or node 3 to node 1. Similarly, the second element in third row is equal to zero. The 
last element in the third row is given by sum of the flows getting into node 3 which is given by fb + fa2 = 
6. If we closely observe the figure we can see that the network discussed below satisfies the second 
assumption discussed earlier. We can observe this in Figure 10. 
 

H(X) = ---(12/24)log2(12/24) --- (6/24)log2(6/24) --- ( 6/24)log2(6/24) = 1.50 bits           (41) 
H(Y) = ---(6/24)log2(6/24) --- (6/24)log2(6/24) --- ( 12/24)log2(12/24) = 1.50 bits                     (42)  

and   H(X, Y) =  ---2(6/24)log2(6/24)--- 4(3/24)log2(3/24) = 2.50 bits.                      (43) 
  

Again:   I(X; Y) = H(X) +H(Y) – H(X, Y) =1.50 +1.50 ---   2.50 = 0.50 bits        (44) 
   and H(X / Y) = H(X) – I(X; Y) = 1.50  ---     0.50 = 1.0 bits             (45) 
with H(Y / X) = H(Y) – I(X; Y) = 1.50  ----     0.50 =  1.0 bits .                             (46) 

 
Thus the remaining calculations are determined via: 

DR = H(X / Y) + H(Y / X) = 1.0 + 1.0 = 2.0 bits                                            (47) 
                              Ef  = (I(X; Y) ) / H(x) = 0.5 / 1.5  =  0.3333  (dimensionless) .                         (48) 
 
 
 
 

 
 

Figure 10. Forward Flow describing Case 2 
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Case 3: (Complex forward flow with no impedance) 
 
If we observe the response Table for Case 2, we can say that the total number of input flows into a node 
gives all the diagonal elements.  Off diagonal element Rij is given by the flow ith node to the jth node in the 
network. The network in Figure 11 looks a bit complex but does not have any impedance because it did 
not have any feedback loops. 
 

H(X) = 1.9159 bits; H(Y) = 1.9159 bits                                                 (49) 
H(X,Y) =  --‐2(9/45)log2(9/45)--‐ 2 (3/45)log2(3/45) --‐3(2/45)log2(2/45) 

--‐(5/45)log2(5/45) ---        (8/45)log2(4/45) =  2.687  bits                          (50) 
 I(X;Y) = H(X) +H(Y) – H(X,Y) =   1.9159 + 1.9159 --‐   2.687 = 1.1448 bits             (51) 

 H(X/Y) = H(X) – I(X;Y) =  1.9159   --‐      1.1448 = 0.7711 bits                              (52) 
H(Y/X) =  H(Y) – I(X;Y) =  1.9159 --‐      1.1448 = 0.7711 bits .                               (53) 

 
The remaining calculations are calculated using 

DR = H(X/Y) + H(Y/X) = 0.7711+0.7711= 1.5422 bits                                    (54) 
  Ef  = (I(X;Y) ) / H(X) = 1.1448 / 1.9159 =  0.5975 (dimensionless) .                          (55) 

 
 

 
 

Figure 11. Complex Forward Flow with No Impedance as described in Case 3 
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Case 4: (Single feedback with impedance) 
 
If we observe the response tables from the above example, we see that the off diagonal elements present 
on the left side of the matrix are all zeroes. This is because there is no feedback loops. Now we consider a 
feedback loop fb1 from node 2 to node 1. So, now we have the first element in the second row which is 
equal to fb1= 1 (observe that the rest of the elements are all zeroes because of the absence of feedback 
loops).  The rest of the table is calculated just like the above cases. The response matrix and Contingency 
matrix are shown in Figure 12. 
 

 
 
 

Figure 12. Single Feedback with Small Impedance as described in Case 4 
 
 

Case 5: (Double feedback with impedance) 
 
Another feedback loop fd1 is added to the above example. The input loop flowing to node 2 are kept 
constant as compared to above two cases in for consistency. Also, only the positive directed arrows 
indicating flows are calculated in the diagonal elements of the response matrix. Again, the off diagonal 
elements represent the flows out of the respective nodes. The network and the contingency table for this 
case is shown in Figure 13. 
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Case 6: (Fully Connected and Maximum Impedance): 
 
In Figure 14, a fully connected graph is displayed. Again, the same output flows of Node 2 are kept 
constant with Cases 3--‐5, for consistency. This digraph represents one of the most complex forms of 
feedback. This graph has a flow arrow from each node to every other possible node. There are a total of 
six feedback loops: fb1, fc1, fc2, fd1, fd2, and fd3. 
  
The results of these six cases are summarized in Table 2 (α=1 in equation (27)) by plotting the key 
variables DR, EF and I, complexity impedance. 
 
 

 
 
 

Figure 13. Double Feedback with Impedance as described in Case 5 
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Figure 14. Fully Connected and Maximum Impedance as described in Case 6 
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Table 2. Calculations of Cases 1‐6 in Figures 9‐14 

 
Case H(X) 

Bits 
H(Y) 
Bits 

H(X,Y) 
Bits 

I(X;Y) 
Bits 

H(X/Y) 
Bits 

H(Y/X) 
Bits 

DR 
Bits 

Ef det( C T *C ) Complexity 
Impedance 

1 .918 0.92 1.59 0.25 0.667 0.667 1.33 .27 1.23 x 10--‐2 0 
2 1.50 1.50 2.50 0.50 1.000 1.000 2.0 0.33 6.1 x 10--‐3 0 

3 1.915 1.915 2.687 1.144 0.771 0.771 1.542 0.597 1.56 x 10--‐7 0 
4 1.932 1.970 3.109 .794 1.138 1.176 2.314 .410 8.575x10--‐7 1.877 x105 
5 1.890 1.976 3.193 .673 1.216 1.303 2.519 .356 1.308x10--‐7 4.894x105 
6 1.97 1.934 3.619 .2889 1.685 1.645 3.331 .1463 5.045x10--‐8 5.985x105 

 
What is interesting in Table 2 is the monotonic increase of information variables with the number of 
feedback loops. The complexity impedance and DR are increasing with the number of feedback loops 
whereas I (X; Y) and Ef are decreasing. 
 
Interpretation of I (x; y): 
 

 
 

Figure 15. Mutual Information (and Linear Regression) as the Number of Feedback loops Increases 
 
Our goal is to render specific bottleneck areas in the network. If we draw an ellipsoid over certain part of 
a network, we can find I(X; Y) in the region. Since I(X; Y) has units of bits, the average throughput flow 
in a given ellipsoid is given by 2I (X; Y). It is very clear that I(X; Y) has been affected by the addition of 
feedback loops. A linear regression through the data collected shows with 97% regression correlation that 
the calculated I(X; Y) is almost linearly decreasing with number of feedback loops. 
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6.0 APPLICATION TO A LOGISTIC DISTRIBUTED NETWORK SYSTEM 
  
Logistics is an area with a rich history of distributed network investigations. A brief overview of logistics 
is presented to show the relevance to the complex network problems of interest in this work. 
 
6.1 Brief Overview of Logistic Related Applications 
 
In the military, logistic applications are used in Battle Field Ad Hoc Networks to study reliable access to 
services and resources in future combat systems. For combat logistics, a flow model has been developed 
to plan battles with minimum inventory. Logistics is used in mobile mesh networks to provide survivable 
and reliable means of gaining information superiority and support efficient minion execution [14]. Team 
munitions logistics are simulated in a Brigade Combat Team study via a discrete event simulation model 
to examine a number of different operating conditions and to understand the sensitive parameters in a 
better way for a successful operation [15]. In [16,17] a logistics system which emulates a Computer based 
Aerial Port Simulation, CAPS (cf., Figure 16) is investigated for the problem of refreshing or resupplying 
an aircraft just landing on the ground. Many issues related to human collaboration and team interactions 
can be studied within this platform. This specific application gives us an opportunity to examine network 
centric systems, especially when they are distributed in nature. 
 
Formulating a flow problem and solving the requisite optimization problem by a procedure such as a 
genetic algorithm can address the optimization of flows in a logistics system [18-21]. There are several 
other optimization techniques that are used in logistics such as the simplex method [22-25]; even graph 
procedures can be used for this purpose. Other means of providing performance improvement in a 
logistics network encompass efficiency measures including variables such as time performance and other 
productivity measures. The best way to address the improvement of a logistics system is enhancing the 
supply chain parameter [26-31]. The study of information and information systems is a natural extension 
of these concepts [32]. The information capacity of a network is a byproduct of the idea. If we look into 
the literature of logistics we can find a variety of eclectic topics such as flow shop problems, which are 
computationally difficult [33]. 

 
 

Figure 16. The CAPS (Computer-based Aerial Port Simulation) Logistics Network 
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Another important observation is that we see a great deal of exploitation of large-scale networks and their 
dynamic behavior. A diverse set of applications was noted such as in the lumber industry looking at the 
trust between humans as they distort information flow along the supply chain [34] and survivability of 
such complex systems [35].   
 
A brief survey of the logistic literature indicates the need and interest in enhancing the understanding of 
performance of such distributed network systems. The focus of this report is in the US Air Force Military 
Services. As previously mentioned, this work will expand upon the simulation in [16,17] to show how to 
apply the three disciplines of information, graph and optimization theories to better understand flow 
performance in logistics systems when viewed within the context of a distributed network-centric system. 
 
6.2 Modeling the Network of the Logistics Distributed Network: 
  
A logistics Distributed Network System is modeled as in Figure 16 to show how to implement the method 
of interest. In Figure 16, we consider a particular situation where communication is only done through an 
Air Terminal Operations Flight, ATOF. In Figure 17, an alternative condition is considered in which all 
possible redundant communications are allowed across all constituent players. This second condition 
represents a ―full spam‖ situation, which includes an unnecessary amount of communications. In Figure 
17, the thick arrows represent redundant communications, which are outside the scope of the performance 
of the minion. The roles of the key players are defined as follows: 
 

 
 

Figure 17. Full Spam Communications 
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ATOF (Air Terminal Operation Flight): 
The key role of this individual is to direct and monitor the remaining four members in the network. 
Initially, as an aircraft lands and is prepared for takeoff, it is taken to a specific ramp location. The 
numbers of seats available, the destination and cargo characteristics have to be determined and 
communicated to the key players. Providing proper temporal sequence order of operations of constituent 
players is as important as monitoring their operation. One important safety constraint is that there should 
be no passenger in the plane when loading or unloading of cargo is taking place.  
 
PS (Passenger Services): 
After the ATOF gives the information about the ramp location and destination, the passenger‘s list is 
checked and manifest is determined for the departing aircraft list. The old passengers have to be deplaned 
and the new passengers have to be boarded when directed by ATOF. 
 
CS (Cargo Services):  
The cargo must be determined specific to the next destination location. This cargo is sequenced and put in 
explicit bins to facilitate ramp services. 
 
RS (Ramp Services):   
This network member must unload the inbound cargo and outbound cargo subject to constraints such as 
no passengers onboard during these activities performed in the proper temporal sequence. 
 
FS (Fleet Services):  
The duties include cleaning the aircraft after the passengers and inbound cargos are removed. They also 
include the uploading of supplies and the correct number of meals required after the outbound passengers 
have been put on the plane before takeoff. 
 
In the case as shown in Figure 16, communications are directed only through ATOF, which is simple, but 
there is no spam. All communications are pertinent.  In Figure 17, every network member communicates 
with the rest of the members. The spam condition is in full effect. This represents more work, more 
unnecessary disruptions with communications. However, the reliability and reduction of vulnerability of 
the network may be improved by these network conditions. 
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7.0 FORMULATION OF AN OPTIMIZATION PROBLEM TO AMELIORATE THE FLOW 
 
Figure 18 is a modified rendering of Figure 16 as a graph representation that generalizes the case in which 
communications are done only through ATOF with minimum but pertinent communications required. The 
topic of interest here is the determination of optimal flow through the overall system. This is calculated 
using information theory techniques.  
 

 
 

Figure 18. Graph Theory Representation of the CAPS System 
 
In analyzing the graph in Figure 18, the presumption is that ATOF is influenced by a source fx and since 
the other players (PS, RS, FS, CS) do not interact with either a source or sink, they obey Kirchhoff‘s law 
(the second assumption in Section 5) in cut sets for flow into and out of each vertex or node. The term 
―fx‖ here represents the number of aircrafts that need to be served at a given time. Also, flow cost along a 
line or arc will be denoted by Cjc. Thus the optimization problem can be formulated as follows: 
 
Select fi where i=1 to 15 in Figure 18 such that either (a) or (b) is true. 

(a) A maximum of I(x;y) is obtained for a fixed fx input. 

(b) Or a minimum of  J1 is obtained, where     J1= 



i1

15

 fi  Cic                          (56) 

subject to the following flow constraints(as a result of Kirchoff‘s Cut Set Laws at each node): 
ATOF:    fx+ f2+ f4+ f6+ f8= f1+ f3+ f5+ f7+ fx                                                 (57) 
PS:          f11+ f1= f9+ f2+ f12                                                                              (58) 
 RS:         f15+ f7+ f9+ f13= f10+ f8                                                                      (59) 
FS:         f10+ f12+ f3= f14+ f13+ f4+ f11                                                                   (60) 
CS:         f5+ f14= f15+ f6                                                                                    (61) 
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These are 15 unknowns with five constraints leaving 10 dependent variables. We can express the five 
equations in matrix form as shown below 

                                   15115155 0 xxx XA                                                                  (62) 
 



1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 0 1 1 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 1 0 1

0 0 1 1 0 0 0 0 0 1 1 1 1 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 1
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If we observe the rank of matrix A, we can easily prove that only 4 out of remaining 5 are independent 
leaving 11 (in total) dependent variables. Thus from the 15 unknown flows 11 dependent flows need to be 
determined.  Some other approaches to calculate the flow are mentioned below. 
 
7.1 Some Traditional Methods to Approach Flow Problems 
 
The Kelly method is widely regarded as the customary method to compute the optimal flow of such 
complex systems using a convex optimization. A game theory method can also be applied and results are 
generalized to internet and other distributed protocols. Here the optimization problem is succinctly 
outlined. 
 
Formulation of the Flow Optimization Problem via Convex Optimization:  
 
The goal here is to find flows fi to minimize the function 

                        Min J1= 



i1

15

 fi Cic                                                                                                  (63) 

where Cic = cost of the i-th link 
subject to the Kirchhoff‘s law at the vertices (57-61) and possibly capacity limitations fi ≤ Cia,where Cia = 
maximum capacity of the link. 
 
The traditional solution of the optimization problem is to define the Lagrangian as 
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                         L(f,p)  =  J1 -  
 











5

1

1 5

1m i
iaim cfp

                                                (64) 
 

where traditional numerical optimization algorithms determine five Lagrangian multipliers Pm. The 
approach will not violate the constraints. The optimization methodology used in this report is genetic 
algorithms but will focus on an information theoretic viewpoint for the cost function. 
 
7.2 Flow Optimization via Genetic Algorithm for the Distributed Network 
 
Genetic algorithms is a powerful tool to evaluate human – machine systems, [36,37]. Genetic algorithms 
will be used here to determine optimal flow vectors. Some numerical problems may be extremely difficult 
to compute due to the combinational nature of the solution. GA is used to analyze the network congestion 
problem in calculating the flows. The advantages of this procedure have applicability for problems of 
extremely difficult numerical complexity that are considered ―N-P hard‖ (non-deterministic polynomial 
meaning the total computation time is of exponential order and not of a polynomial type). The genetic 
algorithm method provides a viable solution in reasonable time. We consider two cases in this report. 
 
Case 1: flow variables are positive integers 
Case 2: flow variables are positive real numbers. 
 
The GA problem for Case 1 can be formulated as below: 
 
Step 1: From our earlier discussion, we know that there are 4 dependent and 11 independent variables. 
Pick 11 unknown flows fi (i = 1, 2, 3… 11) and designate each of them as a computer word with a 
chromosome representation shown in Figure 19. If the assumption is then made that the input to the 
network fx  is bounded,  e.g., 0 < fx < 7, then the initial choice for the flows may be a 3 bit word as 
displayed in Figure 19. For each of the 11 unknown flow variables, there exist up to 7 non-zero choices. 
Thus there will be 711 different combinations of flows. If we take chromosome size as 10 bits, then we 
will have (210 – 1)11 possibilities which is beyond the capability of any practical computer. Thus the 
motivation exists to apply genetic algorithms. 
 

Step 2: The criterion for selecting the chromosomes is the fitness calculated using the I(x; y) function 
shown in equation (11).This is done using Matlab and the corresponding code is shown in Appendix. 
 
Step 3: A pool of 20 chromosomes of the optimal fitness values is initiated, termed the ―elite pool.‖ The 
way this is done is shown in the ‗Gene_Algo.m‘ function and we can find this in Appendix. 
 
Step 4:  New individuals are then created from the elite pool, by using the standard genetic algorithm 
(sGA) operations of crossover (to preserve good qualities) and mutation (to include diversity) with the 
candidate chromosomes. The new individuals must satisfy equations (57)-(61). This is done using 
Crossover and Mutation functions present in the Appendix. 
 
Step 5:  The new individuals are then evaluated for their fitness and compared to the present members in 
the elite pool. If a new member has a better fitness value (higher or lower, depending on  maximization or 
minimization) as compared to the least optimal member of the elite pool, the new member is added to the 
elite pool and the worst individual of the elite pool is removed. This is achieved using ‗sort_ga.m‘ 
function. 
 



 

34 
Approved for public release; distribution unlimited. 

Step 6: This process is continued until either the elite pool converges to the same flow values or if a 
certain number of iterations are surpassed (e.g., 10,000 iterations). The most fit (members with the 
optimal J1 values) are considered the final members in the pool and represent the best solution. 
 

 
 

Figure 19. Generating Chromosomes for the Fitness Pool 
 
 
The GA calculates optimal flows for Case 2 in the following manner. 
 
We generate a candidate solution by doing a local search at the current best flows using a grid search 
technique. Generation of a candidate solution is explained below. 
 
Generation of candidate solution: 
 
We find the null space ‗N‘ of a matrix A in (62). We do our search in the null space of A. Since we have 
only 11 independent variables, we consider a 11- dimensional plane. The distance that we move in each 
of these 11 directions will be determined by vector ‗P‘. Generation of ‗P‘ will be discussed in the next 
section. Once we have ‗P‘ we can generate the candidate solution; the code for this is presented in 
Appendix.  
 
Generation of Vector ‘P’: 
 
We use GA techniques to generate ‗P‘. Even in this case elite pool is first initiated with same 
chromosomes. We apply crossover and mutation techniques to the selected chromosomes. We then 
generate a candidate solution from the current best one. This candidate solution is checked to examine 
whether these are all positive and also if it satisfies the constraints given in equation (57-61). We can find 
the code in the Appendix. We calculate its fitness value if it is more than the least value in the elite pool. 
We replace the last one with this and the fitness value is also changed. We then sort the elite pool. We 
continue this process until we obtain a satisfactory result or until we reach a certain number of iterations. 
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8.0 RESULTS AND DISCUSSIONS 
 

In Figures 20-23 are displayed the mutual information of the best chromosome in the elite pool for 
maximization as well as minimization. Two cases were taken into consideration: first is the case where 
the flow variables are positive integers and the second case takes positive real numbers into account. 
Figures 20 and 21 take the first case into consideration whereas Figures 22 and 23 follow the second case. 
If we observe Figures 20 and 21 we can find a 390% difference (when we compare the best and worst 
measurements of information flows) between maximum information flow and minimum information 
flow. The time taken for the second case is less than that of the first; this can be due to the fact that 
domain for the flow variables in the second case is much larger than the first one. As we can see just by 
varying the values of flow variables we can achieve a huge difference in the information flowing in the 
network. Another important conclusion from the results would be the flow vector that maximizes 
information flow also maximizes the throughput performance. If we want to congest a network the best 
way is to manipulate the flow vector in such a way that it would minimize the information flow in the 
network. If the goal is to disable a network, this produces the maximum congestion as a way to degrade 
the information flow. 
 

 
 

Figure 20. Maximization of I(X:Y) (flow variables – positive integers) 
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Figure 21. Minimization of I(X:Y) (flow variables – positive integers) 
 

 
 

Figure 22. Maximization of I(X:Y) (flow variables – positive real numbers) 
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Figure 23. Minimization of I(X:Y) (flow variables – positive real numbers) 
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9.0 CONCLUSIONS 
 
In this work, a systematic approach was developed to study the efficiency of networks. This approach 
uses graph theory to characterize the structure of the network and information theory to study its 
operation.  A genetic algorithm was used to identify the minimum and maximum flow of the network. 
The ability to study and optimize network flow gives decision makers the ability to identify critical and 
vulnerable nodes and the opportunity to induce or mitigate congestion. Simple examples such as a 
logistics distributed network for Air Terminal Operations Flight (ATOF) were used to illustrate the 
approach. It was shown with specific numerical examples that the difference between the maximum and 
minimum information flows of a network can be quite significant. By identifying the maximum and 
minimum flows, a decision maker will have a better understanding of how to protect or attack a network 
system. 
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APPENDIX 
Matlab Code for Genetic Algorithm 

 
I. ―Assignfitness.m‖ function calculates the fitness value of a chromosome depending on which we manage the 

chromosomes in the elite pool. 
Assignfitness.m 
 
 function res=Assignfitness(bits) 
  
% This function calculates the fitness value (Information flowing in the 
% network) depends on the chromosome. 

  
buffer=Parsebits(bits); 

  
sum=0; 

  
for i=1:15 

  
sum=sum+buffer(i);     

     
end 

  
sum=2*(sum)+7; 

  
% Populating the Contingency Matrix 

  
m(1,1)=(7.0+buffer(1)+buffer(2)+buffer(14)+buffer(4))/sum; 

  
m(1,2)=(buffer(12))/sum; 

  
m(1,3)=(buffer(13))/sum; 

  
m(1,4)=(buffer(3))/sum; 

  
m(1,5)=(buffer(15))/sum; 

  
m(2,1)=(buffer(1))/sum; 

  
m(2,2)=(buffer(12)+buffer(7))/sum; 

  
m(2,3)=(buffer(8))/sum; 

  
m(2,4)=0; 

  
m(2,5)=(buffer(5))/sum; 

  
m(3,1)=(buffer(2))/sum; 

  
m(3,2)=(buffer(7))/sum; 

  
m(3,3)=(buffer(6)+buffer(8)+buffer(13))/sum; 
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m(3,4)=(buffer(10))/sum; 

  
m(3,5)=(buffer(9))/sum; 

  
m(4,1)=(buffer(14))/sum; 

  
m(4,2)=0; 

  
m(4,3)=0; 

  
m(4,4)=(buffer(3)+buffer(10))/sum; 

  
m(4,5)=(buffer(11))/sum; 

  
m(5,1)=(buffer(4))/sum; 

  
m(5,2)=0; 

  
m(5,3)=(buffer(6))/sum; 

  
m(5,4)=0; 

  
m(5,5)=(buffer(9)+buffer(15)+buffer(5)+buffer(11))/sum; 

  
for a=1:5 
    for b=1:5 
        if m(a,b)==0 

             
            m(a,b)=1; 
        end; 
    end; 
end; 

  
% Sum of the elements across the rows 

  
r1=(7+buffer(1)+buffer(2)+buffer(14)+buffer(4)+buffer(12)+buffer(13)+buffer(3

)+buffer(15))/sum; 

  
r2=(buffer(1)+buffer(12)+buffer(7)+buffer(8)+buffer(5))/sum; 

  
r3=(buffer(2)+buffer(7)+buffer(6)+buffer(13)+buffer(8)+buffer(10)+buffer(9))/

sum; 

  
r4=(buffer(14)+buffer(3)+buffer(10)+buffer(11))/sum; 

  
r5=(buffer(4)+buffer(6)+buffer(15)+buffer(5)+buffer(9)+buffer(11))/sum; 

  
% Sum of the elements across the Columns 

  
c1=(7+buffer(1)+buffer(2)+buffer(14)+buffer(4)+buffer(1)+buffer(2)+buffer(14)

+buffer(4))/sum; 
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c2=(buffer(12)+buffer(12)+buffer(7)+buffer(7))/sum; 

  
c3=(buffer(13)+buffer(6)+buffer(13)+buffer(6)+buffer(8)+buffer(8))/sum; 

  
c4=(buffer(3)+buffer(3)+buffer(10)+buffer(10))/sum; 

  
c5=(buffer(15)+buffer(5)+buffer(15)+buffer(5)+buffer(9)+buffer(11)+buffer(9)+

buffer(11))/sum; 

  
% Calculating H(X) and H(Y)  

  
Hx=(-((r1*log (r1))+(r2*log (r2))+(r3*log 

(r3))+(r4*log(r4))+(r5*log(r5))))/(log (2)); 

  
Hy=(-((c1*log (c1))+(c2*log (c2))+(c3*log (c3))+(c4*log (c4))+(c5*log 

(c5))))/(log (2)); 

  
Hxy=0; 

  
for a=1:5 

     
    for b=1:5 

     
        Hxy=Hxy-(m(a,b)*log(m(a,b)));   

         
    end; 
end; 

     
 Hxy=Hxy/log(2); 

  
res=Hx+Hy-Hxy; 
H1=Hx-res; 
H2=Hy-res; 
%res=H1+H2; 
end 
 
 

II. ―Gene_Algo m‖  performs  the  Genetic Algorithm required to produce the flow variable set that results in 
maximum information flow and minimum information flow. 
 
Gene_Algo.m 
 

Population=cell(20,2); % Create a 20 x 2 cell 

  
E=cell2struct(Population,{'bits','fitness'},2); %converts a cell into struct 

  
v=[1;2;2;3;1;3;1;2;1;3;1;3;2;4;3]; % initial chromosome in the customized 

order. 

  
c=dec12bin(v); % Converting the integer vector to binary string 

  
for i=1:20 
E(i).bits=c; % initialize the pool 
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end; 

  
bfound=0; 

  
while  bfound ~= 1 

     
    Totalfitness=0; 
    for i=1:20 

         
        E(i).fitness=Assignfitness(E(i).bits); 
        Totalfitness=Totalfitness+E(i).fitness; 

         
    end; 

     
    cPop=0; % Keeps track of number of successful iterations 
    clear xl; 

     
    while  cPop<150 % this number the number of successful iterations 

required 

         
        if cPop>0 
            Totalfitness=0; 

             
            % Calculating the total fitness value 

             
            for i=1:20 
                Totalfitness=Totalfitness+E(i).fitness; 
            end; 
        end; 

         
        %offspring1 is selected randomly from the elite pool using Roulette 

Function   

         
        offspring1=Roulette(Totalfitness,E); 
        offspring2=Roulette(Totalfitness,E);  

         
        %Crossover is performed between offspring1 and offspring2 

  
        [st1,st2]=Crossover(offspring1,offspring2); 
        offspring1=st1;  
        offspring2=st2;      

         
        % offsprings are mutated  

         
        offspring1=Mutation(offspring1); 
        offspring2=Mutation(offspring2); 

        
        % Checks whether this chromosome satisfies all the flow equations 

         
        p1=Check(offspring1);  

         
        if  p1>0 
            af=Assignfitness(offspring1);   % Calculates the fitness value 
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             % sorts the Elite Pool  
            % In the case of Maximization 1st element contains the maximum 
            % value 
            % In the case of Minimization 1st element contains the minimum 
            % value 

             
            [E,st]=sort_ga(E,af,offspring1); % Sorts the elite pool 

           
            if st == 1 
                cPop=cPop+1; 
                xl(cPop,1)=cPop; 
                xl(cPop,2)=af; 
                %disp(af); 
            end; 
        end; 

         
        % Same operations are performed for the second chromosome as well 

         
        p2=Check(offspring2); 
        if p2 > 0 
            af=Assignfitness(offspring2); 

                         
            % sorts the Elite Pool  
            % In the case of Maximization 1st element contains the maximum 
            % value 
            % In the case of Minimization 1st element contains the minimum 
            % value 

             
            [E,st]= sort_ga(E,af,offspring2); 

             

             
            if st == 1 
                cPop=cPop+1; 
                xl(cPop,1)=cPop; 
                xl(cPop,2)=af; 
                %disp(af); 
            end; 

             
       end; 

        
    end;% while cPop end 

     
 bfound=1;  

  
end; % while bfound end 

  
% Saving and Plotting the fitness values. 

  
xlswrite('data.xls',xl); % Saves the file as data.xls before execution one 

needs to either change name here or in the workspace 
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plot(xl(:,1),xl(:,2)); 
xlabel('Number of Iterations'); 
ylabel('Fitness Value'); 

 

 

 
III. ―roulette.m‖  helps in finding out the chromosome for crossover 

 
Roulette.m 
 

function s= Roulette(total_fitness,E) 
% This function selects the chromosome for crossover 

    
    l=rand(1);  
    Slice = l* total_fitness; 
    FitnessSoFar = 0.0; 
    k=0.0;  
    for i=1:20 
        k=k+E(i).fitness; 
        FitnessSoFar = FitnessSoFar+E(i).fitness; 
        if FitnessSoFar >= Slice 
            s=E(i).bits; 
            break; 
        else 
            s=''; 
       end; 
    end; 
 end 

 

 

 
 

IV. ―crossover m‖  takes both the off springs as input and crossover them to produce new off springs 
 

Crossover.m 
 

function [s1,s2]=Crossover(s1,s2) 

  
% Performs crossover between two chromosomes 

  
s=rand(1);% generates a random number if the number is less than 0.6 

multiplies that with 33 and  
          % crossovers both the offsrpings from that point 

           
if s<0.6   % 0.6 is the crossover rate 

     
    crossoverrate=s * 33;  
    l= round(crossoverrate);    % rounds the number to nearest integer 
    tempstr=s2; 

     
    if l>0 

         
        for i=l:33 
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            s2(i)=s1(i); 
            s1(i)=tempstr(i);  

             
        end;  

         
    end; 

     
end;  

  
end 

 

 
V. ―mutation m‖  performs the mutation operation on the offspring. 

 
Mutation.m 
 

function bits=Mutation(s) 

  
%Mutate bits of the chromosome depending on the mutation rate 

  
for i=1:33 

     
    if rand(1)<0.001 % Mutation Rate 

         
        j=s(i); 

         
        if j=='1' 

             
            s(i)='0'; 
        end; 

             
        if j=='0' 

             
            s(i)='1'; 
        end; 

         
    end; 

     

     
end; 

  

  
buffer=Parsebits(s); 

  
% Calculating the 4 depending variables 

  
buffer(12)=buffer(1)+buffer(5)-buffer(7)+buffer(8); 
buffer(13)=buffer(2)-buffer(6)+buffer(7)-buffer(8)+buffer(9)+buffer(10); 
buffer(14)=buffer(3)+buffer(10)-buffer(11); 
buffer(15)=buffer(4)-buffer(5)+buffer(6)-buffer(9)-buffer(11); 

  
if buffer(12)>0 && buffer(13)>0 && buffer(14)>0 && buffer(15)>0  
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bits=dec12bin(buffer); 

  
else 

     
    bits=''; 

     
end; 

  

  
end 

 

 
VI. ―sort_ga m‖  inserts the new chromosome in the elite pool based on its fitness value i.e.,while finding the 

maximum optimized information flow, the chromosome with least fitness value is discarded and new 
chromosome is added to the elite pool and elite pool is sorted accordingly. 
Sort_ga.m 
 

function [E,st]= sort_ga(E,s,bits) 

     
% This function sorts the Elite Pool depending on the type of Optimization 

  
    st=1; 

     
 % Checks if this chromosome is already present or not    

     
    for i=1:20 
        if E(i).fitness==s 
        st=0; 
        break; 
        end; 
    end; 

     
  % Checks whether the chromosome is bad when compared to worst chromosme 
  % in the Elite Pool 

     
    if s < E(20).fitness 
        st=0; 
    end 

     
    if  st ~= 0 
        for i=1:20 

             
            % '<' is for maximization and '>' is for minimaization in the 
            % below statement 
            % For minimization it is " if E(i).fitness > s "  
            % For maximization it is " if E(i).fitness < s "  

             
            if E(i).fitness < s   
                for k= 19:-1:i 
                    E(k+1).bits=E(k).bits; 
                    E(k+1).fitness=E(k).fitness; 
                end; 
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                E(i).bits=bits; 
                E(i).fitness=s; 
                st=1; 
                break; 
            end; 
       end; 
    end; 
end 

 

 
VII. ―dec12bin.m‖ is used to convert the chromosome from decimal format to binary format so that it would be easy 

for crossover and mutation. 
Dec12bin.m 

 

function bin=dec12bin(k) 
% This function converts the chrosomes from integer to binary format so that 

it would be  
%easy for crossover and mutation 
bin='';  
    for i=1:15   
        num=k(i,1); 
        g= dec2bin(num);     
        len=length(g); 
        if len<3 

  
            for q=1:3-len 
                g=strcat('0',g);     
            end; 
        end; 
        bin=strcat(bin,g); 
    end; 
end 

 

 

 
VIII. ―parsebits m‖ converts the chromosome from binary to interger 

Parsebits.m 
 

function x=Parsebits(s) 
% This function cpnverts the chromosome from binary format to decimal format  
%so that finding the fitness value would be easy 

  
    for i=1:45 
        if rem(i,3)==1     
            tem=0; 
            g=bin2dec(s(i)); 
            d=g*4;         
            tem=d;                 
        end 

         
        if rem(i,3)==2         
            g=bin2dec(s(i));         
            d=g*2;         
            tem=tem+(d);                 
        end 
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        if rem(i,3)==0 
            g=bin2dec(s(i)); 
            tem=tem+g;         
            v(i/3)=tem;                 

         
        end  

        
    end 
x=v'; 
end    

 

 
IX. ―check m‖  checks whether  the given chromosome satisfies the flow equations or not. 

 
Check.m  

 

function s = Check(v) 

  
% this function checks whether the chromosome length is 45 or not 

  
    s=1; 

     
    if length(v)>45 || length(v)<45 
        s=0; 
    else 

  
        s=1; 
    end 

     
end 

 

 

 
X. ―Generate.m‖ is used to generate the candidate solution for the genetic algorithm and the code that does this is 

given below. 
Generate.m 
function buffer=generate(xcurrent,p,N) 

  
% Takes the current solution and search in its vicinity to find the next 

solution 

  
sum=0; 
for i=1:11 
    z(1,i)=1; 
end 

  
for i=1:11 
    p(1,i)= p(1,i)-(2.5*z(1,i)); 
end 

  
for h=1:11 
    sum=sum+(p(1,h)*N(:,h)); 
end 
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% Calculating Another solution with in the vicinity of the current solution 

  
buffer=xcurrent+sum; 

  
%Calculates the remaining 4 dependent variables 

  
buffer(12)=buffer(1)+buffer(5)-buffer(7)+buffer(8); 
buffer(13)=buffer(2)-buffer(6)+buffer(7)-buffer(8)+buffer(9)+buffer(10); 
buffer(14)=buffer(3)+buffer(10)-buffer(11); 
buffer(15)=buffer(4)-buffer(5)+buffer(6)-buffer(9)-buffer(11); 

  

  
end 

 

 
XI. ―Mod_ga m‖ performs the genetic algorithm using the chromosomes that were produced using above generate 

method. It is similar to the ―gene_algo.m‖ except that the chromosomes are generated in a different way. 
 
Mod_ga.m 

Population=cell(20,2);  % Create a 20 x 2 cell 

  
E=cell2struct(Population,{'bits','fitness'},2); %converts a cell into struct 

  
% Co-efficient Matrix 

  
A=[1,1,-1,1,0,0,0,0,0,0,0,-1,-1,1,-1; 
    -1,0,0,0,-1,0,1,-1,0,0,0,1,0,0,0; 
    0,0,0,-1,1,-1,0,0,1,0,1,0,0,0,1; 
    0,-1,0,0,0,1,-1,1,-1,-1,0,0,1,0,0; 
    0,0,1,0,0,0,0,0,0,1,-1,0,0,-1,0]; 

  

  
[b c d]=svd(A); 

  
% Calculating the Null space of A 

  
N=d(:,5:15); 

  
% initial chromosome in the customized order. 

  
v=[1;2;2;3;1;3;1;2;1;3;1;3;2;4;3];  

  
c=dec12bin(v); % Converting the integer vector to binary string 

  
xcurrent1=v; 
xcurrent2=v; 

  
% initialize the pool 

  
for i=1:20 
E(i).bits=c; 
end; 
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bfound=0; 

  
while  bfound ~= 1      

     
    Totalfitness=0; 

     
    for i=1:20 

         
        E(i).fitness=mod_Assignfitness(v); 
        Totalfitness=Totalfitness+E(i).fitness;   

         
    end; 

     
    cPop=1;     % Keeps track of number of successful iterations 

     
    clear xl; 

     
    xl(cPop,1)=cPop;     
    xl(cPop,2)=E(1).fitness;  

     
    while  cPop<5  % this number the number of successful iterations required 

         
         %offspring1 is selected randomly from the elite pool using 
         %Roulette Function 

         
        offspring1=Roulette(Totalfitness,E); 
        offspring2=Roulette(Totalfitness,E); 

         
        %Crossover is performed between offspring1 and offspring2 

         
        [st1,st2]=Crossover(offspring1,offspring2); 
        offspring1=st1; 
        offspring2=st2; 

         
         % offsprings are mutated  

          
        offspring1=mod_Mutation(offspring1); 
        offspring2=mod_Mutation(offspring2); 

         
        % The binary Chromosome is converted into integer vector. 

         
        p1=Parsebits(offspring1); 
        p2=Parsebits(offspring2); 

         
        % Generates the next solution by searching in the vicinity of 
        % current solution 

         
        xcandidate1=generate(xcurrent1,p1',N); 
        xcandidate2=generate(xcurrent2,p2',N); 

         
        % Checks whether this chromosome satisfies all the flow equations 
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            q1=mod_Check(xcandidate1); 

             
            if norm(q1)>0 

                 
                af=mod_Assignfitness(xcandidate1);% Calculates the fitness 

value 

                 
                 % sorts the Elite Pool  
            % In the case of Maximization 1st element contains the maximum 
            % value 
            % In the case of Minimization 1st element contains the minimum 
            % value 

             
            [E,st]=sort_ga(E,af,offspring1); % Sorts the elite pool 

           
                if st == 1 
                    cPop=cPop+1; 
                    xl(cPop,1)=cPop; 
                    xl(cPop,2)=af; 
                     %disp(af); 
               end; 

             
            end; 

         

     

     
        % Same operations are performed for the second chromosome as well 

         
            q2=mod_Check(xcandidate2); 

         
            if norm(q2)>0 

             
                af=mod_Assignfitness(xcandidate2);  
                  % sorts the Elite Pool  
            % In the case of Maximization 1st element contains the maximum 
            % value 
            % In the case of Minimization 1st element contains the minimum 
            % value 

             
            [E,st]=sort_ga(E,af,offspring1); % Sorts the elite pool 

           
                if st == 1 
                    cPop=cPop+1; 
                    xl(cPop,1)=cPop; 
                    xl(cPop,2)=af; 
                     %disp(af); 
               end; 

             
            end; 
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    end;% while cPop end 

     
bfound=1; 

  
end;% while bfound end 

  
% Saving and Plotting the fitness values. 

  
xlswrite('data.xls',xl); % Saves the file as data.xls before execution one 

needs to either change name here or in the workspace 

  
plot(xl(:,1),xl(:,2)); 
xlabel('Number of Iterations'); 
ylabel('Fitness Value'); 

 

 

 

User Manual: 
 

This section explains how to run the code that is presented above. 
 
The assumption is that Matlab is already installed and have all the matlab files in the workspace. 
 
To run the algorithm for integer values, the user would run ‗Gene_Algo.m‘. This is done by typing 
‗Gene_Algo‘ in the Matlab editor. The results are plotted and are saved in the worksapce in the form of 
excel file. The only difference in the maximization and minization is in ‗sort_ga.m‘function, which is well 
documented in the function file. 
 
To run the algorithm for real values, the user would run ‗mod_GA.m‘. This is performed in the same way 
as ‗Gene_Algo.m‘. Some of the functions differ from integer algorithm. The functions required for this 
will be saved in the folder ―modified‖ in the CD that is submitted.         
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
 

 

Acronyms: 

ATOF  Air Terminal Operation Flight 

CAPS  Computer-based Aerial Port Simulation 

CS   Cargo Services 

FS   Fleet Services 

GA  Genetic algorithm  

PS   Passenger Services 

RS   Ramp Services 

sGA  Standard Genetic algorithm  

 

Symbols: 

H(X) Input Uncertainty 

H(Y) Output Uncertainty 

H(X/Y) Equivocation 

H(Y/X) Spurious Uncertainty 

MI  Mutual Information (measure) 

I(X;Y) Mutual Information (measure) 

Ef  Efficiency Normalization (metric) 

DR  Information Distance 

 

 

 

 

 




